ПЕТРОФИЗИЧЕСКИЕ ОСНОВЫ МНОГОВОЛНОВОЙ СЕЙСМОРАЗВЕДКИ

И.О. Баюк¹, <u>Г.А. Шехтман²</u>

¹Институт физики Земли им. О. Ю. Шмидта РАН ² ООО «Геофизические системы данных»

Схема петрофизического обеспечения различных направлений нефтегазовой отрасли [Гудок и др., 2007]

План презентации

- > Упругие свойства горных пород: взаимосвязь микро- и макромоделей
- ▶ Связь сейсмических скоростей с литологическим составом горных пород
- Влияние трещиноватости горных пород на волновое поле и сейсмические скорости
- Неоднородность, анизотропия и другие эффекты: возможности их разделения
- > Ограничения при количественной оценке параметров анизотропии

План презентации

- > Упругие свойства горных пород: взаимосвязь микро- и макромоделей
- Связь сейсмических скоростей с литологическим составом горных пород
- Влияние трещиноватости горных пород на волновое поле и сейсмические скорости
- Неоднородность, анизотропия и другие эффекты: возможности их разделения
- Э Ограничения при количественной оценке параметров анизотропии

Факторы, определяющие упругие свойства породы

Разномасштабность строения горных пород

Карбонатный коллектор (ЮТЗ)

Фотографии О.В. Постниковой

Эффективная модель геологической среды

Эффективная модель:

Реальная порода

Модельная среда

Параметры Форма зерен Форма пор Форма трещин Ёмкость трещин Степень связности пустот Параметр ориентации пустот

«Физические свойства = *F*(*параметры внутреннего строения*)»

«Физические свойства = *F*(*параметры внутреннего строения*)»

Изотропные породы – наиболее популярные методы

Упругие модули = F (модули матрицы и включений, форма и концентрация включений)

Учет формы включений-эллипсоидов

«Физические свойства = *F*(*параметры внутреннего строения*)»

Анизотропные породы

«Физические свойства = *F*(*параметры внутреннего строения*)»

Анизотропные породы

Другие подходы

Упругие модули = =F(модули матрицы и включений; концентрация, форма, ориентация, связность включений)

Тонкие трещины – не обязательно эллипсоиды.

Эффективные свойства зависят от свойств матрицы и параметров «податливости

трещин».

Скорость продольной волны в трещиноватом известняке с вертикальными трещинами

Сравнение методов

Моделирование распространения продольной волны поперек плоскости трещин (скорость по каротажу АК в горизонтальной скважине)

Использованы методы Хадсона (Hud), Нишизавы (Nish), Эшелби (Esh), самосогласования (Self)

Слоистая среда: метод Бэйкуса и формула среднего времени

План презентации

- Упругие свойства горных пород: взаимосвязь микро- и макромоделей
- Связь сейсмических скоростей с литологическим составом горных пород
- Влияние трещиноватости горных пород на волновое поле и сейсмические скорости
- Неоднородность, анизотропия и другие эффекты: возможности их разделения
- Э Ограничения при количественной оценке параметров анизотропии

Связь скоростей упругих волн и литологии

Схематические статистические распределения скоростей V_P и V_S для некоторых типов кристаллических и осадочных пород [Пузырев и др., 1985]

15

Характер зависимости величины Vs/Vp от скорости Vp для некоторых осадочных пород [Бондарев, Крылатков, 2012]

Оценка полярности вступлений волн SS относительно волн PP в зависимости от величины Vp/Vs по разные стороны от границы [McCormack, 1984].

Изолинии проходят через точки с одинаковым коэффициентом отражения (указаны на изолиниях) волн PP от кровли (i+1)-го слоя. (в закрашенных областях полярность волн SS и PP совпадает, а в остальных – нет; эллипсами A показаны области с сильными волнами PP и слабыми SS; эллипсами B показаны области с сильными волнами SS и слабыми волнами PP)

План презентации

ЭУпругие свойства горных пород: взаимосвязь микро- и макромоделей

Жвязь сейсмических скоростей с литологическим составом горных пород

Жлияние трещиноватости горных пород на волновое поле и сейсмические скорости

Жеоднородность, анизотропия и другие эффекты: возможности их разделения

ЭОграничения при количественной оценке параметров анизотропии

Индикатрисы лучевых скоростей в зависимости от угла подхода относительно оси симметрии для волн *P*, *SV* и *SH* для трансверсально-изотропной двухкомпонентной среды [Невский, 1974]

Индикатрисы лучевых скоростей в зависимости от угла подхода относительно оси симметрии для волн *Р* и *S* для орторомбической среды

Две ортогональные системы

Волновые поля для проходящей быстрой (а) и медленной (б)

поперечных волн.

(Стрелкой показано направление воздействия источника, а прямыми линиями внутри окружностей – плоскости трещиноватости. Импульсы на трассах соответствуют сигналам от датчиков, рассредоточенных в разных азимутах в направлении от оси цилиндра [Sondergeld, Rai, 1992]

Волновые поля для поперечных волн при направлении воздействия источника поперечных волн (показано стрелкой) под углом к плоскости симметрии (изотропии) [Sondergeld, Rai, 1992]

Волновые поля для случая, когда источник и приемник поперечных волн расположены в одном азимуте и поворачиваются одновременно в пределах апертуры, равной 180 град [Sondergeld, Rai, 1992]

(В том случае, когда они направлены вдоль плоскости симметрии либо ортогонально к ней, то наблюдается одна поперечная волна – быстрая S1 или медленная S2, соответственно)

Коэффициенты отражения продольных, обменных и поперечных волн от флюидонасыщенной модели среды с HTI-анизотропией [Rüger, 2001; Hardage et al., 2011]

(По горизонтальной оси указаны углы падения волны в градусах. а – для падающей продольной волны; б – для падающей поперечной SVили SH-волны)

План презентации

ЭУпругие свойства горных пород: взаимосвязь микро- и макромоделей

Жвязь сейсмических скоростей с литологическим составом горных пород

Жлияние трещиноватости горных пород на волновое поле и сейсмические скорости

ЭПоглощение сейсмических волн

Жеоднородность, анизотропия и другие эффекты: возможности их разделения

ЭОграничения при количественной оценке параметров анизотропии

Пример абсурдного результата при определении скоростей по одиночным вертикальным непродольным годографам без учета геометрии границ (Казахстан) [Шехтман, 2011]

Номер пласта	Глубина	Пластовые скорости, м/с			
	подошвы, м	ПВ1	ПВ2	ПВ3	ПВ4
3	900	2360±12	2340±8	2350±13	2320±8
4	1700	3120±20	3100±22	3070±22	4700±35
5	2200	3900±46	3510±44	3730±46	7800±160
6	Ниже забоя	4510±18	4276±17	4400±23	5210±70

Результаты определения пластовых скоростей и геометрии границ путем кинематической инверсии вертикальных годографов с различных ПВ (верхняя таблица –ПВ1, ПВ2 и ПВ3, нижняя таблица – ПВ1, ПВ3, ПВ4) (Казахстан)

Номер пласта	Глубина	Угол падения,	Азимут	Пластовая
	подошвы, м	град	падения, град	скорость, м/с
3	886±7	10±1	112±4	2331±9
4	1634±11	16±1	94±7	3138±22
5	2124±17	13±1	98±6	4174±38
6	-	-	-	4540±16

Номер пласта	Глубина	Угол падения,	Азимут	Пластовая
	подошвы, м	град	падения, град	скорость, м/с
3	865±9	16±1	108±8	2310±6
4	1528±18	26±3	95±10	3150±23
5	2172±22	5±1	95±8	4252±63
6	-	-	-	459 2 ±45

Глубинный разрез, полученный путем кинематической инверсии данных НВСП с различных ПВ (слева) и миграции записей ВСП-ПИ (справа) (Казахстан)

(учет пространственного положения границ при решении обратной задачи позволил определить более достоверные результаты)

Волновые поля, полученные при ВСП от ненаправленного источника. Уверенное прослеживание *SH*-волн на у-компоненте предположительно вызвано проявлением гиротропии.

План презентации

- Упругие свойства горных пород: взаимосвязь микро- и макромоделей
- Связь сейсмических скоростей с литологическим составом горных пород
- Влияние трещиноватости горных пород на волновое поле и сейсмические скорости
- ▶ Поглощение сейсмических волн
- Неоднородность, анизотропия и другие эффекты: возможности их разделения
- > Ограничения при количественной оценке параметров анизотропии

Анизотропия VTI среды и ее характеристики

Параметры Томсена

$$\varepsilon = \frac{C_{11} - C_{33}}{2C_{33}} \approx \frac{V_P (90^\circ) - V_P (0^\circ)}{V_P (0^\circ)}$$
$$\gamma = \frac{C_{66} - C_{55}}{2C_{55}} \approx \frac{V_{SH} (90^\circ) - V_{SH} (0^\circ)}{V_{SH} (0^\circ)}$$
$$\delta = \frac{\left(C_{13} + C_{55}\right)^2 - \left(C_{33} - C_{55}\right)^2}{2C_{33} \left(C_{33} - C_{55}\right)}$$

Угловые зависимости скоростей

$$V_{P}(\theta) = V_{P0} \left(1 + \delta \sin^{2}(\theta) \cos^{2}(\theta) + \varepsilon \sin^{4}(\theta) \right)$$
$$V_{SV}(\theta) = V_{S0} \left(1 + \frac{V_{P0}^{2}}{V_{S0}^{2}} (\varepsilon - \delta) \sin^{2}(\theta) \cos^{2}(\theta) \right)$$
$$V_{SH}(\theta) = V_{S0} \left(1 + \gamma \sin^{2}(\theta) \right)$$

Что такое «малая анизотропия» Томсена?

ОСП – расчет по методу обобщенного сингулярного приближения

- (1) точное решение уравнения Кристоффеля,
- (2) аппроксимация Томсена для VTI.

Из работы (Алхименков, Баюк, 2013)

Для данного типа коллектора анизотропия «мала», когда $\mathcal{E} < 0.1 \quad \gamma < 0.27 \quad |\delta| < 0.095 \quad |\delta - \mathcal{E}| < 0.18$

Для коллектора другого типа нужны специальные исследования!!

Практические приложения параметров Томсена

Определение параметра б по полевым данным $V_{\rm NMO}(P) = V_{P0}\sqrt{1+2\delta}$

Результаты математического моделирования, подтвержденные практикой:

Среда с трещинами или неизометричными порами $\delta < 0$ в пустотах пластовая вода или нефть $\delta > 0$ в пустотах газ

Е > *ү* В пустотах газ

е < *γ* в пустотах пластовая вода или нефть

є и γ сложнее определять на практике по сравнению с параметром δ

ЗАКЛЮЧЕНИЕ

- Преимущества многоволновой сейсморазведки в полной мере ощущаются при переходе от моделей сплошных однородных сред к моделям дискретных неоднородных и анизотропных сред. Использование различных типов волн и знание основных закономерностей, устанавливающих взаимосвязь микроструктуры горных пород с особенностями волновых полей, позволяет минимизировать риски при принятии решений на этапе интерпретации сейсморазведочных результатов.
- Модели неоднородных дискретных сред связывают сейсмическое поле с литологией, микроструктурой и ФЕС горных пород – основными характеристиками, определяющими коллекторские свойства пород. Определение этих характеристик по данным сейсморазведки и петрофизики составляет суть задач, ставящихся нефтяниками перед сейсморазведкой.
- При изучении трещинных коллекторов в полной мере проявляются преимущества многоволновой (векторной), а не скалярной, сейсморазведки. При том условии, что трещинность обеспечивает достаточно высокую проницаемость коллектора, открытые месторождения становятся рентабельными.