III Балтийская школа-семинар Петрофизическое моделирование осадочных пород

Трансформация пустотного пространства при моделировании генерации углеводородных флюидов на примере доманикового горизонта Южно-Татарского свода

Гилязетдинова Д.Р., Корост Д. В.

Петергоф, 2014

Основные цели и задачи

Все процессы, связанные с первичной миграцией углеводородов из материнских пород, особенно с причинами начала этого движения, еще далеко не изучены. Исследования таких процессов возможны при создании условий типичных пластовым. Поэтому, большинство работ, посвященных изучению первично-миграционных процессов, носят экспериментальный характер.

<u>Цель:</u> Изучение факторов, контролирующих изменение строения породы в ходе катагенетических преобразований органического вещества

<u>Задачи:</u>

- установить параметры, влияющие на первично-миграционные процессы
- проследить динамику трансформации пустотного пространства при лабораторном моделировании первично-миграционных условий
- оценить влияние на структуру породы термической трансформации матрицы

Современное состояние проблемы лабораторного изучения первично-миграционных процессов

- Эксперименты по исследованию состава и закономерностей миграции углеводородов (УВ)
 Белецкая С.Н., Lafargue E., Rudkiewicz J.L
- Эксперименты по изучению изменений структур пород, их трансформации в результате первичной миграции углеводородов

Характеристика пород до и после пиролиза; Температуры прогрева: 350°C, 425°C, 500°C

Формация Green River

Изучаемая коллекция образцов

1 см

Состав изучаемых отложений

Данные рентгено-структурного анализа

	Кремнистое						
Образец	вещество	кпш	Кальцит	Mg-кальцит	Доломит	Анкерит	Иллит
1	27	1	69	-	1	-	2
2	24	5	57	1	1	6	6
3	20	8	48	1	1	3	19

Шлифы

Текстуры изучаемых отложений

Шлифы

Данные рентгеновской компьютерной микротомографии

Катагенетические преобразования изучаемых

отложений

Перекристаллизация кальцитового материала

Карбонатизация радиолярий

Геохимическая характеристика изучаемых

Характеристика изучаемых отложений

	№	OB (%)	Tmax °C	Состав	Текстура	
	1	4.59	429	Кремнисто-Карбонатный	слоистая	
Минеральный состав	2	12.67	431	Керогеново-Кремнисто- Карбонатный	слоистая	Содержание ОВ
Зрелость ОВ	3	10,46	430	Керогеново-Глинисто- Кремнисто-Карбонатный	слоистая	Текстуры
	4	0,7	424	Карбонатный	пятнистая	
Состав УВ	4	2,41	420	Глинисто-Карбонатный	слоистая	
	4	3.44	423	Кремнисто-Карбонатный	пятнистая	
Тип ОВ	4	5,98	423	Керогеново-Крбонатный	массивная	
	5	3,92	427	Кремнисто-Карбонатный	слоистая	
	5	1,27	420	Карбонатно-Кремнистый	массивная	
	5	0,57	433	Карбонатный	массивная	

 Изучение влияния содержания ОВ на морфологию породы в процессе термического воздействия

2. Изучение влияния текстур на первично-миграционные процессы при одинаковых значениях ТОС

Параметры оценки трансформации пористого пространства

Оценка ОВ (пористости) проводилась на основе компьютерного анализа: разделения рентгено-контрастных фаз по яркостям. По выделенной яркости, соответствующей поровому пространству пород, был произведен объемный расчет фазы - Ø

Расчетная связанность - α

характеризует степень связанности пустот в объеме, который достигается путем математического анализа. Данный анализ позволяет рассчитать количество и параметры каждого отдельного объекта (поры). На основе анализа оценивается объемная доля самого большого кластера, который характеризует самую высокую связанность пустот в породе.

Прогрев 500°С

Часть 1: Разные содержания ОВ; Одинаковые текстуры

Образец 1					
<u>ОВ:</u> 4, <u>Тексту</u>	<u>ОВ:</u> 4,59% <u>Текстура: </u> слоистая				
Обр. До После 1 °C °C					
α, %	4,25	62			
Ø, %	4,8	7,7			

Образец З
<u>OB:</u> 10,46%
<u>Текстура:</u> слоистая

Обр. 3	До °C	После °C	
α, %	13,3	94	
Ø, %	5,5	19,9	

Данные РЭМ

А – исходная порода; В, С, D – Измененная порода

Образец №	α, % до °C	α, % после °С	Ø, % до °С	Ø, % после °С	ТОС, %
1	4,25	62	4,8	7,7	4,6
2	18,2	72,6	8,3	15,4	12,7
3	13,3	94	5,5	19,9	10,5
4.2	8,7	15	4,2	5,7	2,4
5.1	86	94,3	17,7	20,1	4

- Морфология всех измененных пород характеризуется образованием новых пор и каналов, связывающих первичные пустоты.
- Слоистая текстура данных пород тоже сыграла свою роль. Избыточное давление, повлекшее за собой образование трещин, может быть связано с изолированностью прослоев, к которым приурочены трещины. А в образцах, где образование трещин не наблюдалось, компоненты пород образуют не сплошные параллельные прослои, Поэтому первичная миграция УВ проходит при отсутствии избыточного давления, вследствие изначальной связанности пор.
- Образцы 4.2, 5.1, обладавшие относительно низкими значениями ТОС (2,41%, 3,92%), в меньшей степени преобразовались, в отличие от образцов 1, 2 и 3 со значениями ТОС (4,59%, 12,67%, 10,46%).

Прогрев 500°С

<u>Часть 2:</u>Одинаковое содержания ОВ; Разные текстуры

Образец 5.1

<u>OB:</u> 3,92%

Текстура: слоистая

Обр. 1	До °C	После °C	
α, %	86	94,3	
Ø, %	17,7	20,1	

Образец 4.3
<u>OB:</u> 3,44%
Текстура: пятнистая

Обр. 1	До °C	После °C	
α, %	34	59,1	
Ø, %	9,7	13,8	

<u>OB:</u> 23,81% <u>Tmax:</u> 410°C

Часть 3: Динамика изменения пустотного пространства в ходе последовательного прогрева

Данные рентгеновской компьютерной микротомографии

Рентгеновские плотностные сечения породы

Прогрев,	α, %	Ø, %	Потери,
L			МГ
0	97,4	20,6	0
140	99,2	31,8	2,855
260	99,4	34	0,381
430	99,6	50,5	5,562
500	99,6	58,3	0,264

<u>OB:</u> 1,06% <u>Tmax:</u> 440°C

<u>Часть 4</u>: Оценка влияние на структуру породы термической трансформации матрицы

Основные выводы

- <u>Содержание OB</u> в породе играет большую роль в преобразованиях порового пространства. Прослеживается прямая зависимость между содержанием TOC и трансформацией морфологии породы при генерации УВ
- <u>Текстурные признаки</u> пород также влияют на преобразования структуры порового пространства пород, так как от них зависит распределение ОВ в породе
- Максимальная генерация УВ приходится на этап прогрева породы от 260°С до 430°С
- Результаты прогрева образца с преобразованным ОВ позволили исключить расширение матрицы породы, как значимого фактора, влияющего на структуру пустотного пространства в процессе температурного воздействия на породу.

Спасибо за внимание!