The reduction in signal detection threshold with the method of waveform cross correlation by using a seismic array of three-component sensors
Category: 17-1Abstract References Full text (in Russian)
UDC 550.34
©2016 V.V. Adushkin(1,2), I.O. Kitov(1), I.A. Sanina(1,2)
(1) Institute of Geospheres Dynamics, Russian Academy of Sciences, Moscow, Russia
(2) Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
Abstract. The use of waveform cross-correlation allows reducing the amplitude detection threshold of repeating seismic events by a factor of 5 to 10, to improve the accuracy of relative location and seismic magnitude estimate more than by an order of magnitude, and also provides the possibility to reliably identify the source nature. In this study, we demonstrate that in comparison with the sub-array of vertical channels temporary seismic array of three-component sensors (3-C) detects more valid signals with higher mean signal-to-noise ratios (SNR). For this analysis, we used records of repeating blasts from seven quarries that are from 60 km to 350 km distant from the 3-C array center. For each quarry, we selected best waveform templates which provided maximum quantity of valid signals with the largest signal-to-noise ratios. We have directly compared the efficiency of detection and identification of blasts’ signals with the help of complete 3-C array and sub-array consisting of vertical sensors. The results of comparison indicate that the 3-C arrays have considerable advantages over any other types of stations, that is based on the increase of total energy of template and sought signals and also on the specifics of the template waveform due to the three times increase of total length of the template. The growth of the signal-to-noise ratio results in the increasing number of detected seismic signals and specifics of the waveform reduce the rate of false alarms.
Keywords: waveform cross-correlation, seismic array, three-component stations, signal detection, quarry blasts.
References
Adushkin V. V., Kocharyan G.G., and Sanina I.A. Contribution of explosions to development of seismic strains in the region of the East European Craton, Doklady Earth Sciences, 2011, vol. 441, no. 1, pp. 1523-1525.
Adushkin V. V., Sanina I.A., Vladimirova, Gabsatarov Yu.V., Gorbunova E.M., and Ivanchenko G.N. Modern geodynamically active zones in the Central East European Craton, Doklady Earth Sciences, 2013, vol. 452, no. 2, pp. 1042-1045.
Bugaev E.G., Kishkina S.B., and Sanina I.A., Peculiarities of seismic monitoring in the sites of nuclear energy objects within the East European Craton, Yad. Radiats. Bezop., 2012, no. 3, pp. 1–9.
Bobrov D., Kitov I., and Zerbo L. Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre, Pure and Applied Geophys, 2014, vol. 171, no 3-5, pp. 439-468. doi: 10.1007/s00024-012-0626x
Braun T., J. Schweitzer, R. Azzara, D. Piccinini, M. Cocco, and Boschi E. Results from the temporary installation of a small aperture seismic array in the Central Apennines and its merits for local event detection and location capabilities, Ann. Geophys., 2004, vol. 47, no. 5, pp. 1557-1568.
Coyne J., D. Bobrov, P. Bormann, E. Duran, P. Grenard, G. Haralabus, I. Kitov, and Yu. Starovoit Chapter 15: CTBTO: Goals, Networks, Data Analysis and Data Availability, (ed. P. Bormann) New Manual of Seismological Observatory Practice, 2012, doi: 10.2312/GFZ.NMSOP-2_ch15
Freiberger W.F. An approximation method in signal detection, Quart. J. App. Math, 1963, vol. 20, pp.3 73–378.
Geller R. J. and Mueller C. S. Four similar earthquakes in central California, Geophys. Res. Lett. 1980, vol. 7, pp. 821-824.
Gibbons S. and Ringdal F. A waveform correlation procedure for detecting decoupled chemical explosions, NORSAR Scientific Report: Semiannual Technical Summary, 2004, no. 2, NORSAR, Kjeller, Norway, pp. 41–50.
Gibbons S. J. and Ringdal F. The detection of low magnitude seismic events using array-based waveform correlation, Geophys. J. Int., 2006, vol. 165, pp.149–166.
Gibbons S., Kværna T., and Ringdal F. Monitoring of seismic events from a specific source region using a single regional array: a case study, J. Seismol., 2005, vol. 9, pp.277–294.
Gibbons S. J., Schweitzer J., Ringdal F., Kværna T., Mykkeltveit S., and Paulsen B. Improvements to Seismic Monitoring of the European Arctic Using Three-Component Array Processing at SPITS, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 6, pp. 2737–2754.
Israelsson H. Correlation of waveforms from closely spaced regional events, Bull. Seismol. Soc. Am. 1990, vol. 80, pp.2177–2193.
Harris D. and Dodge D. An autonomous system of grouping events in a developing aftershock sequence, Bull. Seismol. Soc. Am., 2011, vol. 101, pp.763–774.
Joswig M. Pattern recognition for earthquake detection, Bull. Seismol. Soc. Am., 1990, vol. 80, pp. 170-186.
Joswig M. and Schulte-Theis H. Master-event correlations of weak local earthquakes by dynamic waveform matching, Geophys. J. Int. 1993, vol. ll3, pp. 562-574.
Kedrov O.K. and Permyakova V.E. A new approach for three-component seismic array processing, Annali di Geofozica, 1994, vol. XXXVII, no. 3, pp. 255-266.
Kennett B. L.N., Stacking three-component seismograms, Geophys. J. Int., 2000, vol. 141, pp. 263-269.
Kitov I.O., Volosov S.G., Kishkina S.B., Konstantinovskaya N.L., Nepeina K.S., Nesterkina M.A., and Sanina I.A. Detection of regional phases of seismic body waves using an array of three-component sensors, Seismic Instruments, 2016, vol. 52, no.http://link.springer.com/journal/11990/52/1/page/1 1,pp. 19-31.
Kitov I.O., Sanina I.A., Nepeina K.S., and Konstantinovskaya N.L., Application of the matched filter technique at the Mikhnevo small aperture seismic array, Seism. Prib., 2014, vol. 50, no 3, pp. 5–18 (in Russ).
Kishkina S.B. and Bugaev E.G. Control of seismic safety for the nuclear energy objects, Vestn. NYaTs RK, 2014, no. 2, pp. 153–163.
Richards P., Waldhauser F., Schaff D., and Kim W.-Y. The Applicability of Modern Methods of Earthquake Location, Pure and Applied Geophysics, 2006, vol. 163, pp.,351-372.
Schaff D. P. Semiempirical statistics of correlation-detector performance, Bull. Seismol. Soc. Am., 2008, vol. 98, pp.1495–1507.
Schaff D. and Richards P. G. Repeating seismic events in China, Science. 2004, vol.303, p.1176–1178.
Schaff D. and Richards P. G. On finding and using repeating events in and near China, J. Geophys. Res., 2011, vol. 116: B03309. doi: 10:1029/2010/B007895.
Schaff D. and Waldhauser F. Waveform cross correlation based differential travel-time measurements at the northern California Seismic Network, Bull. Seismol. Soc. Am., 2005, vol. 95, pp. 2446–2461.
Schaff D. and Waldhauser F. One magnitude unit reduction in detection threshold by cross correlation applied to Parkfield (California) and China seismicity, Bull. Seismol. Soc. Am., 2010, vol. 100, pp. 3224–3238.
Schaff D. P., Bokelmann G. H. R., Ellsworth W. L., Zanzerkia E., Waldhauser F., and Beroza G. C. Optimizing correlation techniques for improved earthquake location, Bull. Seismol. Soc. Am., 2004, vol. 94, pp. 705–721.
Schaff D. and Richards P. Improvements in magnitude precision, using the statistics of relative amplitudes measured by cross correlation, Geophys. J. Int., 2014, vol. 197, pp. 335–350. doi: 10.1093/gji/ggt433
Schweitzer J., Fyen J., Mykkeltveit S., Gibbons S., Pirli M., Kühn D.,and Kvaerna T. Seismic Arrays, (ed. P. Bormann) New Manual of Seismological Observatory Practice, 2012, Ch. 9. doi: 10.2312/GFZ.NMSOP-2_ch9.
Slinkard M., Carr D., and Young C. Applying waveform correlation to three aftershock sequences, Bull. Seismol. Soc. Am., 2013, vol. 103, pp. 675-693.
Van Trees H.L. Detection, Estimation and Modulation Theory / John Wiley and Sons, 1968.
Wagner G.S. and Owens T.J. Broadband eigen-analysis for three-component seismic array, IEEE Trans. Signal Processing. 1995, vol. 43, pp.1738-1741
Waldhauser F. and Schaff D. Large-scale cross-correlation based relocation of two decades of Northern California seismicity, J. Geophys. Res., 2008, vol. 113, B08311. doi: 10.1029/ 2007JB005479.
Zemletryaseniya Rossii v 2013 g. (Earthquakes in Russia in 2013), Obninsk: GS RAN, 2015
Zhang M. and Wen L. Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea, Seismological Research Letters, 2015, vol. 86, no. 1. doi:10.1785/02201401170
Yao H., Shearer P., and Gerstoft P. Subevent location and rupture imaging using iterative back-projection for the 2011 Tohoku Mw 9.0 earthquake, Geophys. J. Int., 2012, vol. 190, no. 2, pp. 1152–1168. doi:10.1111/j.1365-246X.2012.05541.x