Ground surface temperature reconstruction over the last 30,000 years from Onega parametric borehole temperature data

Category: 14-2
D.Yu. Demezhko, A.A. Gornostaeva, G.V. Tarkhanov, O.A. Esipko


UDC 550.361:551.583




D.Yu. Demezhko(1), A.A. Gornostaeva(1), G.V. Tarkhanov(2), O.A. Esipko(2)


(1) Institute of Geophysics, UB RAS, Yekaterinburg, Russia

(2) JSC “SIC Nedra”, Yaroslavl, Russia



Temperature log data from the Onega parametric borehole were analyzed. Temperature gradient variations observed to the depth of 2.5 km can be attributed to climate variations, rhythmic oscillations of thermophysical properties of volcano sedimentary rocks and thermal regime disturbances due to drilling. Considering these factors, a ground surface temperature history over the last 30,000 years was reconstructed. According to the reconstruction ground surface temperature 25,000 years ago was 18–20 °C lower than now. The increase of surface temperature began about 20 000 years ago and was originally associated with the warming influence of the Scandinavian ice sheet. After the ice sheet collapsed about 12,000 years ago the surface temperature follows the global warming of climate.

Keywords: geothermy, borehole temperatures, ground surface temperature reconstruction, paleoclimate, Onega parametric borehole, Valday (Weichselian) glaciation, Scandinavian ice sheet, Pleistocene, Holocene.



Balling, N., Breiner, N., and Waagstein, R., Thermal structure of the deep Lopra-1/1A borehole in the Faroe Islands, Geological Survey of Denmark and Greenland Bulletin, 2006, vol. 9, pp. 91–107.

Beck, A.E. and Judge A., Analisis of heat flow data - I, detailed observation in a single borehole, Geophys. J. Res. Astr. Soc., 1969, vol. 18, pp. 145–158.

Beck, A.E., Precision logging of temperature gradients and the extraction of past climate, Tectonophysics, 1982, vol. 83, pp. 1–11.

Birch, F., The effect of pleistocene climatic variations upon geothermal gradient, American J. Sci., 1948, vol. 61, pp. 567–630.

Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, M, Nauka, 1964, 488 p. [in Russ].

Cermak, V. Underground temperature and inferred climatic temperature of the past millennium, Palaeogeogr.Palaeoclim. Palaeoecol., 1971, vol. 10, pp. 1–19.

Demezhko D.Yu. and Solomina O.N., Integrated geothermal research in Kun-1 borehole (Kunashir Island). Part II: Integrated reconstruction of the Earth’s surface temperature fluctuations based on geothermal and tree-ring data, Uralsky geofizichesky vestnik, 2009, no. 2, pp. 25-36.

Demezhko, D.Yu., Ryvkin, D.G., Outkin, V.I., Duchkov, A.D., and Balobaev, V.T., Spatial distribution of Pleistocene/Holocene warming amplitudes in Northern Eurasia inferred from geothermal data, Climate of the Past, 2007, vol. 3, pp. 559–568.

Demezhko, D.Yu., The Geothermic Method of Paleoclimate Reconstruction (with the Urals as an example), Yekaterinburg: UrO RAN, 2001.

Demezhko, D.Yu., Utkin, V.I., Duchkov, A.D., and Ryvkin, D.G., Geothermic estimates of the amplitudes of Holocene warming in Europe, Doklady Earth Sciences, 2006, vol. 407, no. 1, pp. 259-261.

Forsström, P.-L. Through a glacial cycle: simulation of the Eurasian ice sheet dynamics during the last glaciation, Annales Academiae Scientiarum Fennicae, Geologica-Geographica, 2005, vol. 168.

Hotchkiss, W.O. and Ingersoll, L.R., Post-glacial time calculations from recent geothermal measurements in the Calumet Copper Mines, J. Geol., 1934, vol. 42, pp. 113–142.

Kleman, J. and Hattestrand, C., Frozen-bed Fennoscandian and Laurentide ice sheets during the last glacial maximum, Nature, 1999, vol. 402, pp. 63–66.

Kukkonen, I.T, Rath, V., Kivekas, L., Šafanda, J. and Čermak, V., Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications, Phys. Earth Planet. Inter., 2011, vol. 188, pp. 9–25.

Kukkonen, I.T., Gosnold, W.D. and Šafanda, J., Anomalously low heat flow density in eastern Karelia, baltic Shield: a possible paleoclimate signature, Tectonophysics, 1998, vol. 291, pp. 235–249.

Lachenbruch, A.H. and Marshall, B.V., Changing climate:Geothermal evidens from permafrost in the Alaskan Arctic, Science, 1986, vol. 234, pp. 689–696.

Lindroth, D.P. Thermal diffusivity of six igneous rocks at elevated temperatures and reduced pressures, Report. U.S. Bureau of Mines (Washington), 1974, 33 p.

Lunkka, J.P., Saarnisto, M., Gey, V.P., Demidov, I. and Kiselova, V., Extent and age of the Last Glacial maximum in the southeastern sector of the Scandinavian Ice Sheets, Global and Planetary Change, 2001, vol. 31, pp. 407–426.

Onega Palaeoproterozoic structure (geology, tectonics, deep structure, and minerageny), ed. L.V. Glushanin, N.V. Sharov, V.V. Shchiptsov, Petrozavodsk: Karelsky nauchny tsentr RAN, 2011, 431 p.

Report on Onega parametric borehole (executive coordinator V.V. Narkisova), Yaroslavl, 2009, skv0.htm

Ryder, E.E., Finley, R.E., George, J.T., Ho, C.K., Longenbaugh, R.S. and Connolly, J.R. Bench-scale experimental determination of the thermal diffusivity of crushed tuff, Technical Report SAND–94-2320. Sandia National Labs., Albuquerque, NM, 1996, 242 p.

Saarnisto, M. and Saarinen, T., Deglaciation chronology of the Scandinavian Ice Sheet from the Lake Onega Basin to the Salpausselka End Moraines, Global and Planetary Change, 2001, vol. 31, pp. 387–405.

Sonin G.V.,Thermophysical properties of soil and temperature of the neutral layer of CIS territory, Georesursy, 2001, no.1(5), pp.16–19.

Titayeva N.A. Yadernaya geokhimiya: Uchebnik (Nuclear geochemistry: Textbook), Moscow: MGU, 1992, 272 p. 

Yli-Halla, M. and Mokma, D.L., Soil temperature regimes in Finland, Agriculture and Food Science in Finland, 1998, vol. 7, pp. 507–512.