The model of the paleomagnetic secular variations: theory and implementation

Category: 13-2
A.V. Khokhlov


UDC 550.384.3, 519.246.3, 519.258



A.V. Khokhlov


International Institute of Earthquake Prediction Theory and Mathematical Geophysics,

Russian Academy of Sciences, Moscow, Russia



The Giant Gaussian Process mathematical model of the paleomagnetc secular variations is revisited to discuss the corresponding computer implementation. The code is available via INTERNT. It comes out that magnetic excursions (previously associated with non-stationarity) can be observed in this purely stationary stochastic model. The corresponding computations will give rise the quantitative description of some specific features in sedimentary paleomagnetic data, for instance the flattening.

Keywords: magnetic field of the Earth, secular variation, paleomagnetism, stationary gaussian process, statistics on sphere.



Abramovitz, Μ. and Stegun, I., Handbook of mathematical functions with formulas, graphs, and mathematical tables, New York, 1964.

Bouligand, C. and Hulot, G. Statistical palaeomagnetic field modelling ans symmetry considerations, J. Int. Geoph., 2005, vol. 161, pp. 591–602. doi:10.1111/j.l365-246X.2005.02612.

Bouligand, С., Hulot, G., Khokhlov, Α., and Glatzmaier G.A., Statistical palaeomagnetic field modelling and dynamo numerical simulation, J. Int. Geoph., 2005, vol. 161, pp. 603–626. doi: 10.1111/j.1365-246X.2005.02613.

Constable, C. and Johnson, C., Anisotropic paleosecular variation models: implications for geomagnetic field observables, Earth Planet. Sci. Lett., 1999, vol. 115, pp. 35–51.

Constable, C.G. and Parker R.L., Statistics of the geomagnetic secular variation for the past 5 Myr, J. Geophys. Res., 1988, vol. 3, pp. 11569–11581.

Eckhardt, D.H., Correlations between global features of terrestrial fields, Math. Geol., 1984, vol. 16, pp. 155–171.

Hongre, L., Hulot, G., and Khokhlov, A., An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Int., 1998, vol. 106, pp. 311–315.

Hulot, G. and Le Mouël, J-L., A statistical approach to the Earth's main magnetic field, Phys. Earth Planet. Int., 1994, vol. 82, pp. 167–183.

Johnson, C. and Constable, C. The Time-Averaged Geomagnetic Field: Global and Regional Biases for 0-5 Ma, Geophys. J. Int., 1997, vol. 131, pp. 643–666.

Johnson, C. and Constable, C., Paleosecular variation recorded by lava flows over the last 5 Myr, Phil. Trans. R. Soc. Lond., 1996, vol. 354, pp. 89–141.

Johnson, C. and Constable, C., The time-averaged field as recorded by lava flows over the past 5 Myr, Geophys. J. Int., 1995, vol. 22, pp. 489–519.

Magnetics Information Consortium (MagIC) Promoting information technology-infrastructures for the international paleomagnetic, geomagnetic and rock magnetic community, earthref. org/cgi-bin/magic-sO-main.cgi

Mauersberger, D., Das Mitel der Energiediche des Geomagnetischen Hauptfeldes an der Erdoberflache und seine Sakulare Anderung, Gerlands Beitr. Geophys., 1956, vol. 65, pp. 207–215.

Merrill, R., McElhinny, M., and McFadden, P., The magnetic field of the Earth. London: Academic Press, 1996.

Press, C., Teukolsky, S., Vetterling, W., and Flannery B., Numerical Recipes in C. Second ed. Cambridge, 1996, See also

Press, C., Teukolsky, S., Vetterling, W., and Flannery B., Numerical Recipes in C. Second ed. Cambridge, 2004.

Quidelleur, X., Courtillot, V., On low-degree spherical harmonic models of paleosecular variation, Phys. Earth Planet. Int., 1996, vol. 95, pp. 55–77.

Swanson-Hysell, N.L., Maloof, A.C, Weiss, B.P., and Evans, D.A., No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts, Nature Geosci., 2009, vol. 2, pp. 713–717.

Tauxe, L. and Kent, D.V., A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar?, Timescales of the Paleomagnetic held: Amer. Geophys. Un. Monongr / Eds. J.E.Т. Channell, D.V. Kent, W. Lowrie, J. Meert., 2004, vol. 145, pp. 101–115.