

Влияние поверхностных парамагнитных центров на релаксационные характеристики флюида в поровом пространстве

Перепухов А.М., Кишенков О.В., Максимычев А.В., Гуденко С.В. МФТИ

NMR Logging

^{*}Applications of 2D-NMR Maps and Geometric Pore Scale Modeling for Petrophysical Evaluation of a Gas Well Pedro A. Romero, Mikhail Gladkikh and Guillermo Azpiroz

Релаксация флюида в поре

Приповерхностный слой Объемная жидкость

$$\frac{1}{T_{1.2}} = \rho_{1,2} \frac{S}{V}$$

Механизмы релаксации флюида в поре

- Объёмная релаксация
- Релаксация на поверхности поры (без парамагнитных примесей)
- Релаксация на парамагнитных примесях на поверхности поры

Влияние парамагнитных примесей

Зависимости скоростей ЯМР релаксации ядер 1 Н воды в растворе медного купороса от концентрации CuSO_4

Коэффициенты релаксации

Песчаник	$\rho_1 = 3.10^{-3} \text{ cm/c}^*$
Песчаник	ρ_2 =2,3·10 ⁻³ cm/c **
Доломит	ρ_2 =5,35·10 ⁻⁴ cm/c **
Известняк	ρ_2 =3,16·10 ⁻⁴ cm/c **
Стеклянные шарики	$\rho_2 = 3.6 \cdot 10^{-3} \text{cm/c}$
Пористое стекло Vycor	ρ_1 =4.6·10 ⁻⁷ cm/c *

^{*} R.L. Kleinberg, W.E. Kenyon, P.P. Mitra, Mechanism of NMR Relaxation of Fluids in Rock, Volume 108, Issue 2, June 1994, Pages 206-214

^{**} George R. Coates, Lizhi Xiao, and Manfred G. Prammer, NMR Logging Principles and Applications, Halliburton Energy Services, Houston, 1999, 48

Модельные пористые среды (стеклянные шарики)

Элементный состав стеклянных шаров

ЭПР спектры стеклянных шаров

ЭПР спектр ионов Fe+++ в стекле

^{*} Note on the Paramagnetic Resonance of Iron in Glass. T. Castner, G. S. Newell, W. C. Holton, C. P. Slichter. J. Chem. Phys. 32, 668 (1960)

ЭПР спектры парамагнитных центров стекла

^{*} Irradiation of controlled pore glasses with 10 MEV Electrons. S. Le Caer, P. Rotureau, G. Vigneron, G. Blian. Rev. Adv. Mater. Sci 10, 161 (2005)

Парамагнитные центры стекла

E' – center "wet" oxygen hole center "dry" oxygen hole center

 $g \approx 2,00$

ЭПР спектры стеклянных шаров и стеклянных сфер

Балтийская школа-семинар «Петрофизическое моделирование осадочных пород» г. Петергоф * 17-21 сентября, 2012

Парамагнитные центры на поверхности стекла

